JOURNAL OF COMPUTATIONAL PIEYSICS FIT, 90101 (1995)

An Advancing Front Delaunay Triangulation Algorithm
Designed for Robustness

Dinvrrri J. MAVRIPLIS

ICASE Mail Stop 132C, NASA Langley Rescarch Center, Hampion, Virginia 23665

Received Ociober 2, 1992

A new algorithm is described for generating an unstructured mesh
about an arbitrary two-dimensional configuration. Mesh points are
generated automatically by the algorithm in a manner which en-
sures a smooth variation of elements, and the resulting triangulation
constitutes the Delaunay triangulation of these peints. The algo-
rithm combines the mathematical elegance and efficiency of Delau-
nay triangulation algorithms with the desirable point placement
features, boundary integrity, and robustness that are traditionally
associated with advancing-front-type mesh generation strategies.
The method offers increased robustness over previous algorithms in
thatit cannotfail, regardless of the initial boundary point distribution
and the prescribed cell size distribution throughout the flow-
field. & 1995 Academic Press, Inc.

L. INTRODUCTION

Onec of the main promises of unstruclured mesh computa-
tional flnid dynamics is the ability to discretize flow-fields about
arbitranily complex geometries in (wo and three dimensions.
With this purpose in mind, a number of algorithms for con-
structing two-dimensional triangular and three-dimensional tet-
rahedral unstructured meshes have been developed over the
years [1-9]. Of the various methods developed, two types of
approaches which have received much attention in the computa-
tional fluid dynamics community have been advancing-front-
based techniques [}, 2] and Delaunay-triangulation-based tech-
niques {3-6]. These two strategies have most often been per-
ceived as competing approaches to the same problem. However,
a Delaunay riangulation merely refers o a particular connectiv-
iy associated with a given set ol points which possesses certain
desirable properties, while an advancing front technigue consti-
tutes a point placement stralegy while nnposing a particular
ordering of the element generation process, Thus, the two ap-
proaches are in some sense complementary, and several recent
attempts to combine the advantages of both methods have ap-
peared in the literaturc [7-9]. This is the approach taken in
this work.

One may question the need for yet another unstructured mesh
generation straiegy. especially in two dimensions. As will be
shown, all of the present methodologies offer much room lor

0021-999 /95 $610
Copyright © 1095 by Acudemic Press, Inc,
All rights of seproduction in any form reserved,

improvement in terms of either efficiency or robustness, and
the present algorithm was designed with such issues in mind,
Furthermore, the two-dimensional setting is employed for dem-
onstrating techniques which should eventually be extendabie
o three dimensions.

L1, The Advancing Front Approach

In order to understand the development of the present
algorithm, it is useful to first examine the advantages and
disadvantages of the various existing algorithms. Advancing
front techniques begin with a discretization of the geometry
boundaries as a set of edges in two dimensions. These edges
form the initial front which is to be advanced out into the
field. A particular edge of this front is selected, and a new
triangle is formed with this edge as its base, by joining the
two ends of the current edge either to a newly created point,
or to an existing point on the [front. The current edge is
then removed from the front, since it is now obscured by
the new triangle, Similarly, the remaining two edges of the
new triangle are either assigned to the front or removed
from the front, depending on their visibility, as shown in
Fig. 1. The front thus constitutes a stack {or priority queue),
and edges are continuously added to or removed from the
stack. The process terminates when the stack is empty, ie.,
when all fronts have merged upon each other and the domain
is entirely covered. One of the critical features of such
methods is the placement of new points. Upon gencrating a
new triangle, a new point is first placed at a position which
is determined to resalt in an optimal size and shape triangle.
The parameiers which define this optimum triangle as a
function of field position are obtained by a prescribed field
function {(which may be interpolated from a background grid).
The triangle generated with this new point may result in a
crossover with other front edges and thus may be rejected.
This is determined by computing possible intersections with
“‘nearby’” front edges. Alternately, an existing point on the
front may coincidentally be located very close to the new
point and thus should be employed as the forming point for
the new triangle to avoid the appearance of a triangle with

ADVANCING FRONT DELAUNAY TRIANGULATION 91

FIG. 1. Illustration of conventional advancing front mesh generation con-
cept in two dimensions. Dotted line represents current front. New triangles are
generated one at a time, by joining the two ends of a front edge to either a
newly created point, or an existing front poini.

a very small edge at some later stage. Existing candidate
points are thus also searched by locating all ‘*‘nearby™
front points.

One of the advantages of such an approach is the automatic
point placement strategy, which generally results in high-
quality elements throughout most of the flow-field due to the
optimum positioning of these new points. Additionally, all real
operations performed (such as intersection checking) are of a
local nature; i.e., intersection checks are performed with neigh-
boring edges of similar length, thus reducing the chances for
round-off error-induced failure. Finally, boundary integrity is
guaranteed, since the boundary discretization constitutes the
initial condition.

The space requirements for such an algorithm are lower than
may be expected. Since this is essentially a greedy triangulation
[10]; i.e., formed elements are never subsequently modified,
all points, edges, and triangles which lie behind the front need
no longer be considered in the generation process. Thus the
only active portion of the data is the front. Since a front has
one dimension lower than the domain to be discretized, the
required space for such an algorithm in two dimensions is
O(\/ﬁ), where N is the final number of grid points generated.
Since N points are added sequentially, the complexity is at
most O(N \/ﬁ). However, by employing sophisticated search-
tng techniques such as spatial quad-trees, this complexity is
easily lowered to O{N log \/E’) which is asymptotically equiva-
lent to G(N log N). Optimal space usage has not in general
been achieved, due to the difficulty in continuously dumping
out generated elements. However, restart capabilities are easily

implemented {11], which can greatly reduce the required work-
ing size for a large mesh generation job.

The disadvantages of advancing front techniques mainly re-
late to their efficiency. The intersection checking phase is a
rather brute-force technique for ensuring the acceptability of a
new triangle, which is relatively expensive. Additionally, for
each generated triangle, the quad-tree data structure must be
traversed from top to bottom (O (log N} steps) in order to locate
“‘nearby’’ points and edges. Another contributing factor is the
fact that advancing front techniques construct the mesh one
triangle at a time. Since in two dimensions there are asymptoti-
cally twice as many triangles as points, a more efficient strategy
would be to construct the mesh one point at a time. Thus, each
time a new point is generated, efficiency could be gained by
determining all the potential triangles which join this new point
to the existing front with a single traversal of the quad-tree
data-structure. In three dimensions, the savings are even greater,
since there exisis on average 5 to 6 times more ietrahedra
than vertices.

Finally, even though advancing front techniques rely only on
local operations, they may still suffer from robustness problems.
Central 10 the issue of determining acceptable triangles and
‘‘best’’ points, is the determination of a local length scale which
defines the region of “‘nearby’” points and edges. This length
scale is generally obtained from the field function (which may
employ a background grid). Consider the case of two merging
fronts. If the field function varies rapidly over the region be-
tween the merging fronts, the relative sizes of the edges on one
front may be much larger than those on the other front. If a
search is initiated from the front with the smaller length scale,
the region of “‘nearby’’ edges may not contain the appropriate
edges and points of the other front, and failure will occur, as
shown in Fig. 2. Thus, the advancing front technique can only
be guaranteed to produce a valid triangulation if certain non-
heuristic constraints are derived and imposed on the variation
of the field function.

1.2. Delaunay Triangulation Algorithms

Given a set of points in the plane, there exist many possible
triangulations of these points. A Delaunay construction repre-
sents a unique triangulation of these points which exhibits a
large class of well-defined properties. Particular properties can
be employed to construct algorithms for generating the Delau-
nay triangulation of a given set of points.

The empty circumcircle property forms the basis of the
Bowyer/Watson algorithm [12, 13]. This propeity states that
no triangle in a Delaunay triangolation can contain a point other
than its three forming vertices within its circumcircle. Thus,
given an initial triangulation, a new point may be inserted
into the triangulation by first locating and deleting all existing
triangles whose circumgcireles contain the newly inserted point.
A new triangulation is then formed by joining the new point
to all boundary vertices of the cavity created by the previous
removal of intersected triangles, as shown in Fig. 3.

97 DIMITRI §. MAVRIPLIS

FIG. 2.

Hlustration of a failure scenario for the traditional advancing front
algorithm: the merging of two fronts of widely differing length scales. The
advancing front of small triangles may fail to locate the end points of a large
edge on the adjacent front prior to crossover, since these points may be outside
of the scarch region defined by the local length scale.

These algorithms exhibit a worst case complexity of Q(N?)
(imagine the case where each newly inserted point intersects
all existing triangle circumcircles) and have thus been avoided
in the computational geometry literature. However, G(N?) be-
havior represents a pathological case and in general, mesh
generation applications employing this algorithm exhibit close
to linear complexity [4]. In fact, it has been shown that
O(N log N) complexity can always be achieved if the order in
which the points are inserted is modified [14].

Point insertion algorithms can be employed as the basis for
a mesh generation strategy where the mesh points have been
predetermined. The mesh points are put in a list, and an initial
triangulation is artificially constructed (with auxiliary points)
which completely covers the entire domain to be gridded. The
mesh points in the list are then inserted sequentially into the
existing triangulation using the Bowyer/Watson algorithm. The
final mesh is obtained when all the points from the list have
been inserted. The main problems associated with such an
approach relate to the generation of an initial triangulation.
While it is not difficult to construct an initial triangulation, the
insertion of points can lead to robustness problems due to
round-off error. This comes about due to the non-local nature
of the real operations required in the insertion process. When
an inner boundary point is introduced at the initial stages of
the triangulation, atriangle joining this point to the outer bound-
ary will most likely be formed. If the next point introduced is
an adjacent boundary point, the distance between these two
points may be much smaller than the distance to the outer
boundary (i.e., the other dimension of the triangle being inter-

sected), and round-off error alone may cause an improper recon-
nection.

For non-convex domains, the integrity of the boundaries is
not guaranteed by such an approach. This is generally remedied
by increasing the boundary point resolution, or by triangulating
through the boundary and performing an edge swapping clean-
up phase as a postprocessing operation to recover the boundary
edges [15].

The poor worst-case complexity of the above algorithms has
led to the development of a vadety of divide and conquer
algorithms for the Delaunay triangulation of an existing point
set [10, 16]. In this approach, the points are recursively divided
into two groups, each group is triangulated individually, and
the groups are then merged together. Such an approach can be
shown to exhibit a worst-case complexity of G(N log N). The
merging of two triangulations exhibits certain similarities with
the merging of fronts in the advancing front process. However,
the aigorithms are based on known Delaunay triangulation prop-
erties, rather than the assumption of an appropriate length scale,
and thus can be proved to yield a correct triangulation under
any conditions.

An advancing front type algorithm for constructing a Delau-
nay triangulation of a given set of points has been demonstrated
in the context of mesh generation by Merriam [7). This ap-
proach, which has also been reported in other applications [17-
9], relies on the empty circumcircle property. An edge on the
front is chosen, and a new triangle is tentatively formed by
Jjoining the ends of this edge to an arbitrary point of the set of
points to be triangulated which lie to the intzrior of the domain,
with regards to the front. If this formed triangle contains any
points within its circumcircle, it cannot be a valid Delaunay
triangle, and thus an alternate point is chosen; i.e., the point
contained inside the newly formed circumcircle which is closest

FIG. 3. lllustration of Bowyer’s point insertion algorithm for Delaunay
triangulation.

ADVANCING FRONT DELAUNAY TRIANGULATION 93

FIG. 4. ilustration of the iteration sequence employed by the advancing
front Delaunay triangulation algorithm: a triangle is formed by joining the
front edge to a vertex. If the circumcircle of this triangle contains one or more
vertices, the triangulation is invalid, and a new triangulation is formed using
one of the vertices interior to the previous circle. The process iterates uniil a
triangle with a vertex-free circumncircle is obtained, which determines conver-
gence.

to its circumcenter. By iterating this procedure, as shown in
Fig. 4, the appropriate point which produces a triangle con-
taining no points interior to its circumcircle is eventually found.
The new triangle is thus accepted and the front advanced.

The present work makes use of the ideas found in the divide
and conquer algorithms and the advancing front Delaunay trian-
gulation algorithm. However, all the algorithrs discussed so
far assume that the mesh points have been predetermined. What
is desired in the mesh generation context is an automatic point
placement strategy. There are various Delaunay triangulation
algorithms which incorporate automatic point placement strate-
gies. A very simple method [5, 6] is based on the Bowyer/
Watson algorithm. Starting with an initial coarse triangulation
which covers the entire domain, a priority queue is constructed
based on some parameter of the individual triangles (circum-
radius for example). A field value is assumed to exist which
determines the local maximum permissible value for the cir-
cumradius of the triangles (or other parameter). The first triangle
in the queue is examined, and a point is added at its circumcenter
if the triangle circumradius is larger than the locally prescribed
maximum. This new point is inserted into the triangulation
using Bowyer’s algorithm, and the newly formed triangles are
inserted into the queue if their circumcircles are too large;
otherwise they are labeled as acceptable and do not appear in
the queue. The final grid is obtained when the priority queue
empties out.

A consequence of this approach is that the final triangulation
depends on the order of the insertion of the points. For example,
if the queue is ordered by the smallest circumcircle rather than
the largest circumcircle, a different triangulation will result.

Furthermore, the meshes produced by this strategy do not ex-
hibit the high degree of smoothness and element quality usually
produced by the advancing front technique. Modifications to
the point placement strategy have been proposed separately by
Rebay [8] and Mueller ef al. {9]. Both methods are quite similar.
[n 8], for example, the triangles are divided into accepted (small
enough) triangles, and waiting (too large) triangles. However, a
subset of the waiting triangles is defined as those which border
on accepted iriangles. These so-called active triangles are the
only ones considered as candidates for point insertion. When
new points are inserted, they are positioned along the median
of the edge separating the active triangle from its neighboring
accepted triangle, at a distance which results in the formation
of an optimal triangle between the new point and the bounding
edge. The optimal size of the triangle is determined from the
field function. The initial trianguolation is set up by joining all
inner boundary points to the outer boundary points, and all
triangles adjacent to the boundaries are defined as active. The
order in which points are inserted thus resembles the advancing
front algorithin. The process begins at the boundaries and
marches cutwards as new triangles are accepted, and their outer
neighbors become candidates for refinement. The produced
triangulations exhibit the smooth variations and high quality
elements typically associated with advancing front techniques,
without the difficulties of merging fronts.

Delaunay techniques involving point placement are much
more efficient than advancing front techniques. The absence
of a sophisticated spatial data structure for locating neighboring
points and the lack of an intersection checking routine make
these very simple and efficient algorithms. Furthermore, the
mesh is generated point by point, rather than one triangle at a
time. Each time a point is inserted, all triangles neighboring
that point are formed simultaneounsly, which results in increased
efficiency due to the larger number of elements than points in
an unstructured mesh, However, these algorithms still suffer
from their inability to guarantee boundary integrity and the use
of non-local operations which are prone to round-off error, as
can be seen by the large aspect ratio (non-accepted) triangles
in Fig. 5 (which is taken from [9]). These are precisely the
strengths of the advancing front technique. Thus, what is re-
quired is an advancing front strategy which automatically posi-
tions new points, forms triangles which conform to the Delau-
nay criterion, and exhibits the efficiency of Delaunay point
insertion methods.

2. DESCRIPTION OF FROPOSED ALGORITHM

The proposed algorithm is essentially an advancing front
algorithm which adds new points ahead of the front and triangu-
lates them according to the Delaunay criterion. By making use
of certain properties of Delaunay triangulations, one can ensure
that only local operations are required and that consistent trian-
gulations are always obtained.

The local property of Delaunay triangulations forms the basis

94 DIMITRI 1. MAVRIPLIS

0.60
0.204
o AVAVAVivgp,
RN Y,
e.euh..vﬂh#.ém ‘,,#,'g:a‘r
AV TATY, vmva'-'s"--' P
g' A'A'A Q IR Y
020+ ZAVAN A =\
-060 T T T T T
-0.10 0.30 0.70 1.10
FIG. 5. Illustration of the advancing front nature of the algorithms de-

scribed in [8, 9]. The illustration is reproduced from [9] and depicts the Delaunay
triangulation obtained at an intermediate stage in the mesh generation process.

of this algorithm. A field function is defined which determines
the maximum permissible circumradius of a triangle as a func-
tion of its position in the domain to be discretized. When a
new point is added ahead of the front, it is desired to construct
all the Delaunay triangles which contain this new point but
which do not violate the local circumradius bound. Triangles
which violate the circumradius bound should not be con-
structed, even temporarily, for this may require non-local opera-
tions and the possibility of round-off induced error. One method
of constructing these triangles is simply to join the new point
to every possible pair of points in the grid and preserve each
potential triangle which does not violate the Delaunay criterion
and the circumradius bound. A more efficient technique is to
determine a subset of the grid points which is sufficient for
locating all the acceptable triangles. Such a subset can be
formed by considering all the points which are less than 2p
away from the new point, where p represents the maximum
permissible local circumradius as determined by the field func-
tion. Since any resulting triangles will contain an edge joining
the new point to one of these candidate points, any points
further than a distance 2p away from the new point cannot
produce a triangle with a circumradius smaller than p. Further-
more, it will be shown that we need not consider all such points,
but only the points on the front which are within 2p of the
new point.

When adding a new point, two possibilities exist: either the
point is not contained in any existing triangle circumncircle, or
there exists a number of triangles whose circumcircles contain
this new point. In the former case, we know that all the existing
triangles will still be valid after the insertion of the new point.

Thus any new triangles must be formed by joining the new
point to points on the front only. In the latter case, we must
determine the set of triangles whose circumcircles are inter-
sected. This set may contain triangles which border on the front
as well as triangles which are interior to the mesh. However,
the set cannot contain interior triangles without containing at
least one front triangle; otherwise the interior triangles would
not be visible to the new point after all the intersected triangles
have been removed, which is required by the properties of a
Delaunay triangulation [4]). Thus, in order to locate all the
intersected triangles, we first locate the intersected front trian-
gles, and then we determine the intersected interior triangles
by searching the neighbors of these triangles and the neighbors
of any subsequently found infersected triangies. In the tradi-
tional point insertion Delaunay algorithms, such situations do
not arise; since the triangulation always covers the entire do-
main, every inserted point must be contained in at least one
triangle circumncircle. Furthermore, all the intersected triangles
can be located using the neighbor search approach, since the
grid is fully connected. In the advancing front version, the
neighbor search may be interrupted by the ungridded gap region
between fronts. However, the Delaunay visibility property guar-
antees that all the intersected triangles can be located from a
neighbor search, provided all the intersected front triangles are
known and used to initiate the search, as shown in Fig. 6.
Finally, there is a third situation which must be considered.
There may exist a point on the front which, when joined to the
two ends of the front edge being considerad, forms an accept-
able triangle. At first it may appear as if such a situation should

FIG. 6.

Illnstration of the search for intersected circumcircles employed
in the current algorithm. Upon insertion of point P, the two front triangles St
and $2 are flagged as having their circumcircles intersected. The two neighbors
of 51 are searched and found to be non-intersected. One of the neighbors of
52 is flagged as intersected, which causes the search to proceed to its neighbors,
where it terminates.

ADVANCING FRONT DELAUNAY TRIANGULATION

not arise. This existing front point should have been linked to
the current edge at the time of its insertion. However, due to
the variation of the local field function, it is possible that such
a triangle would have been rejected at that time, since the
field function was not sampled at precisely the same spatial
location as when approaching from the other front. In any
case, this situation is easily handled. Since it involves the
generation of a new triangle without the insertion of a new
point, we merely resort to the algorithm reported in [7, 17—
19] for advancing a Delaunay triangulation front on a set
of predetermined points.
Thus the algorithm can be summarized as follows:

I. Construct the original front as the set of boundary edges.

2. Choose a particular edge of the front, according to some
criterion such as minimum edge length.

3. Determine the maximum permissible circumradius by
evaluating the field function at the center of the edge.

4. Locate all front points which are less than 2p away from
either end point of this edge.

5. Use the algorithm in [7] to determine the Delaunay trian-
gle formed between this edge and the set of candidate points,
if such a triangle exists.

6. If this triangle exists and is acceptable (circumradius
smaller than p), form new triangle, update the front, and proceed
to 13. Otherwise create a new point at the appropriate location,

e

FI1G. 7. lliustration of the point placement strategy employed by the current
algorithm. A new point is placed along the median of the front cdge at a
distance determined by the prescribed local circumcircle size (background
function). The point position is limited at the lower end by the intersection
with the inscribed circle of the front edge (point P1) and at the upper end by
the circumcenter of the Delaunay triangle formed between the front edge and
existing mesh points (point P2).

95

FIG. 8. If a point P is not contained in the inscribed circle of a boundary
edge then the distance from P 1o the end points of the edge s is bounded by
\/_2d, where d represents the minimum distance from P to the edge. Since
s = Vd? + r', the bounding case occurs when d = r, i.e., when P is on the circle.

7. Determine all the front triangles whose circumcircles are
broken by the new point,

8. Using a neighbor search initiated at the intersected front
triangles, locate all the interior triangles whose circumcircles
are intersected by the new point.

9. Remove all such triangles and update the front. Any new
front points which result from this operation are added to the
list of *‘close’’ points.

10. If the circumradius of any of the intersected triangles is
larger than the previously determined maximum permissible
value p, replace the old value by this new maximum, and locate
any additicnal front points which are less than 2p away from
the new point.

11. Form all possible Delaunay triangles which contain the
new point and two other points in the list of “‘close’’ points
and which do not violate the local circumradius bound. Such
triangles are found using the algorithm in [7].

12. Add these triangles to the mesh and update the front.

13. If the front queue is empty, stop; otherwise go to 2.

The searches in steps 4 and 7 must be implemented using
quad-tree-type data stroctures in order to aveid an O(N\/K’)
overhead. The actual manner in which new points are positioned
in step 6 is taken from [8]. In this work, a triangulation which
covers the entire domain always exists, and new points are
inserted in the so-called active triangles which border on pre-
viously generated accepted triangles. A new point is positioned
along the median of the edge which delimits the active triangle
from an accepted triangle at the precise distance which results
in a triangle of the desired circumradius when the new point
is joined to the end points of this edge. However, the prescribed

96 DIMITRI I. MAVRIPLIS

AN IANAARAAT VAVAVAYA
iV %mvm#
v

b
RO RS ¢° °A°“¢¢s¢°3§§§§¢'ﬁ

O
é" VAV%V%I‘I%‘AVA%Y

b 'AVAVA AVA # Qeu AVA
Aﬁvmﬂg % ‘&Qﬁﬁeﬂ ¢ AV ;
¢¢$ ‘e

VAVAVA

R
0#%61%1"

@4 ﬁh@mu

RO

e‘%‘ VAVAﬁVNAV AYAYA VeVAVAYAYAYAVAYAY VA%A

A'AYAV#Y

Qé;ﬂv¢v¢v¢ve¢e "g‘;gz.%;g;;:;;n

FIG.9. a. Triangulation of two thin plates with dissimilar boundary point distributions. A situation involving two merging fronts of widely different length
scales occurs. Once a vertex from the from of small iriangles intersects one of the circumcircles of the large triangles on the opposing front, the fronts are
merged. b. Final triangulation produced in region of merging fronts for the triangulatton of two thin plates.

circumradius may be incompatible with the local triangulation.
For example, if the prescribed circumradius is smaller than
half the current edge length, there is no point location which
yields a triangle of the desired size. In this case, the new
point is positioned at the intersection of the edge median
and the edge inscribing circle, since this results in the smallest
possible triangle circumcircle containing the current edge.
On the other hand, if the prescribed circumcircle is much
larger than the current edge length, the new point may
inadvertently be positioned close to another existing front
mesh point, which would result in undesirable triangles away
from the current edge. In this case, the point location along
the median of the current edge is limited by the circumcenter
of the current active triangle, thus guaranteeing that the new

FIG. 10. Quadtree constructed about initial boundary peint distribution.
This quadtree is empleyed to support the background spacing function and
also represents the initial form of the quadiree employed in the search for
“*close”’ front points.

point will be at least a distance p.q. away from all other
mesh points.

This strategy is mimicked in the current advancing front
algorithm. The new point is positioned along the median of
the current front edge at & distance which results in a triangle
of the desired circumradius. The location of the new point
along the median is limited at the lower end by the intersection
of the median with the inscribed circle of the current front
edge, and at the other extreme by the location of the
circumncenter of the Delaunay triangle formed with this edge
and existing mesh points, which is found in step 5, as shown
in Fig. 7. Thus, in step 5, we must ensure that we form
any triangle for which the circumradius is up to twice the
size of the prescribed circumradius. Any larger triangles will

i

o —

P X

FIG. 11. Two-dimensicnal illustration of 3D} octree employed to search
for intersected front triangle circumcircles. Circles are represented as points
in 3D, determined by their center (horizontal axis X {and ¥)) and their radius
(vertical axis R). In order to locate all circtes intersected by point P, all quadrants
{octanus) fully or partially contained within the cone centered at (P, 0) must
be searched.

ADVANCING FRONT DELAUNAY TRIANGULATION 97

not be useful in limiting the position of the new point. If the
circumradius of the formed triangle is smaller than twice the
prescribed value, but still larger than the prescribed value itself,
the triangle will be employed solely to limit the position of the
new point, and then discarded afterwards. On the other hand,
if the triangle circunyradius is smaller than the prescribed value,
the triangle is retained as part of the mesh, and no new point
is required.

When new triangles are formed, one must ensure that the
integrity of the boundary discretization is not violated. This is
accomplished by removing from the list of “*close’” points all
points which are not visible to the new point due to the presence
of boundary edges. (In the case of step 5, we remove all points
which are not visible to the two end points of the current edge.)
In two-dimensions, the existence of constrained Delaunay trian-
gulations [20} guarantees that this is a sufficient condition to
obtain a suitable boundary conforming discretization. One
method of removing non-visible points is to draw the ray from
the new point to the point being tested and check for intersec-
tions with all the boundary edges. Since the number of boundary
edges is O(VN), this can become prohibitively expensive.
Hence, a sufficient subset of the boundary edges which are
“‘close enough’” to the new point is first determined and then
employed to check for intersections. Since the points being
tested are all within a distance 2p of the new point, we are
merely required to test all the boundary edges which are within
this distance of the new point. These include, but are not limited
to, all the boundary edges with an end point which belongs to the
current list of “‘close’’ points. In order to locate the remaining
boundary edges whose normal distance to the new point is less
than 2p, but whose end points are further away than 2p, from
the new point, we draw the inscribed circle of the boundary
edge, as shown in Fig. 8.

We distinguish two cases: the first case when the new
point is inside the inscribed circle of the boundary edge,
and the second case when the new point lies outside this
circle, In the first case, the boundary edge is added to the
list of edges which require searching. In the second case,
Fig. 8 indicates that the distance from the new point to the
end points of the edge can at most be V2 times the normal
distance from the new point to the edge. Thus, the set of
boundary edges required for checking intersections is formed
by locating all boundary edges which contain a vertex less
than 2\/§p away from the new point, as well as all boundary
edges whose inscribed circles are intersected by the new
point. The determination of these points and intersected
circles can be performed simultaneously with the search for
nearby points in step 4 and the search for intersected triangle
circumcircles in step 7, respectively,

Using this subset, the number of boundary edges which must
be checked for intersections is greatly reduced. In fact, in most
cases, typically for the interior regions of the mesh, no *‘close”
boundary edges will be found and no checking for intersections
will be required.

3. RELATIONSHIP WITH PREVIOUS WORK

It is informative to examine the relationship of the present
algorithm with those discussed earlier. This work is closely
related to that of Rebay [8] and Mueller et al. [9]. A similar
mesh should be produced by the present method and that of
[8], since both use similar point placement strategies, and both
produce the Delaunay triangulation of these points. The main
difference is that in the previous works, a triangulation which
covers the entire domain always exists, whereas in the present
work, only the area behind the fronts is covered by a triangula-
tion. In the former case, the existing triangulation is conve-
niently employed as the basic data structure (i.e., a linked list)
to support the searches for locating the intersected triangles
and the points to which the new point must be connected.
In the present work, only the triangles which correspond to
“‘accepted’’ triangles in [8] are present, and thus more compli-
cated guad-tree type data structures must be employed to locate
the neighboring points and the intersected triangles on the
fronts, while the triangulation can be employed to aid the search
in regions behind the fronts. While this adds to the coding
complexity and incurs additional overhead, the omission of
non-accepted triangles ensures that all the real operations are
of a local nature, thus minimizing the opportunities for round-
off error-induced failure. Boundary integrity is also pre-
served automatically.

The present algorithm also closely resembles the advancing
front algorithm of [1, 2]. However, explicit intersection check-
ing is not required due to the properties guaranteed by the
Delaunay construction. Both approaches rely on the determina-
tion of a local characteristic distance which is employed for
reducing the number of front edges and points which must be
considered in the triangulation process. In the advancing front
algorithm of [1, 2], this length scale is obtained from the field
function {evaluated by interpolating from a background grid).
The implicit assumption in this method is that the field function
varies slowly with respect to the local cell size and, thus,
may be considered locally constant when advancing a front or
merging two fronts. In cases where this assumption does not
hold, the merging of two fronts of widely differing cell sizes
may occur, which usually results in a failure of the algorithm.
In the present strategy, a local length scale is obtained from
the prescribed field function as well. This distance is employed
to locate all “‘nearby’” front points. However, an additional
search is required to locate front triangles whose circumgircles
are intersected by the newly inserted point. If the field function
were constant throughout the domain, this second search would
not be required, since all the vertices of any intersected triangle
{which could have a circumcircle no larger than that prescribed
by the field function) would be no further from the new point
than the constant search distance defined by the field function.
Thus, the search for intersected front triangles corresponds to
the determination of an alternate characteristic length scale at
neighboring fronts, which is required in order to guarantee a

98 DIMITRI J. MAVRIPLIS

FIG.12. Unstructured triangular mesh generated about a four-element airfoil confignration by the present algorithm before the application of mesh smoothing.
a. Number of vertices = 21,232; number of triangles = 41,781 (global view). b. Number of vertices = 21,232: number of triangles = 41,781 (far field view).
c. Number of vertices = 21,232, number of triangles = 41,781 (closeup of leading edge slat).

valid triangulation in regions where the field function varies
rapidly.

4. COMPLEXITY AND SPACE REQUIREMENTS

The space requirements and computational efficiency of the
present algorithm lie in between those of traditional advancing
front algorithms and the Bowyer/Watson algorithm for Delau-
nay triangulation. As opposed to the advancing front algerithms,
the present approach does not represent a true greedy algorithm
[10]; i.e., triangles behind the front may be subsequently modi-
fied. However, the only such triangles which may be modified
are those whose circumcircle extends ahead of the front into the
ungridded region into which new points are placed. Assuming a
relatively smooth distribution of elements behind the front, the
number of such non-frozen elements is a constant times the
size of the front. Thus, we can expect a space requirement of
O(Vﬁ), although the worst-case estimate is more likely O(N).
On the other hand, it is a simple matter to create a restart
facility which dumps out the generated portion of the grid
after a prescribed number of elements have been produced
and reinitializes the generation process using the front of the
previous mesh as the initial condition. If no old elements behind
the front are considered in the restart process, the resulting
mesh may contain regions of locally non-Delaunay triangles

along the fronts present at each restart phase. If a true Delaunay
triangulation is required, these regions may be converted
using the edge-swapping algorithm [21] in a postprocessing
phase.

The current algorithm exhibits a worst case complexity of
Q(N?), just as the Bowyer/Watson algorithm for Delaunay
rriangulation. This occurs when the circumcircles of all the
existing triangles are intersected by each new point, or when
all the front points must be included in the list of *‘nearby”™
points which are candidates for forming a new element. How-
ever, for the smooth element and point distributions which are
sought in the context of mesh generation, the number of points
within the characteristic distance of a newly inserted point and
the number of intersected triangles should approach a constant.
When the log ¥ term from the guad-tree structures employed
for the search routines on the front is included, a complexity
of O(N log N) can be expected. This is thz same complexity
exhibited by other advancing front algorithms under the same
assumptions. However, the present algorithm can be expected
to run significantly faster than other advancing front algorithms
since the mesh is generated one point at a time, rather than one
triangle at a time. In two dimensions, the differences may be
small, especially since two length scales and thus two searches
on the front are required for robustness (an additional one for
the intersected front triangles). However, in three dimensions

ADVANCING FRONT DELAUNAY TRIANGULATION 99

c
-n w /hc.\ -"-.\\ AL s=' K o v# A ’
EeteX N AR B RS e R B
A ASE I L
O L AR B S R
ERpeaec i
Yardy *#‘%ﬁ%‘*4&&’4&5@”#&'%&5&5&&5@ AR
‘# N 9‘#&' #ﬁﬁé §‘fa¢" gaaaaﬁaﬁasiﬁégﬁhgm 3 AL
OO SR G i ;
v) OO D R R R R
AN B S B
v SRR #“‘e‘% Pk &Bé;ﬁq?ﬁeaeg-::-sas
A5 éé s G e e
VRS ERR i g
S R e R R S
KR Ry
e bt : g
v RDBAGAR LY 3 AL A YR
KPR AR L b R SE o
e T e
i L
X $ A O A ey 5 /
MR R T R RS
_ Q) ?d$¢§v ot 3“";":?: _p’«;gf# a*n%v%i‘-qﬁaé ¥ Aﬁfg “"h ¢
e e
S RO
5535,1& sbﬁ?ﬁ L0 9“"%‘%“&%‘&% S Aﬂ AN
RS e R TG,
LR ek SRR AQ(}AQ““év“e %g ‘AV‘
3 K h% ééga § il 'g"h‘!ﬁ “‘6’9 #"'ﬁvi“ \vé \/ a ‘V 3
5&‘5‘%}@% W A
ok NSH 5 3 ¥ ‘.':' GO £ 3 - 2 ’
SR S K

FIG. 12—Continued

where there are on the average 5 to 6 times more tetrahedra
than vertices, the O(log ¥) cost of traversing the octree data
structures may be amortized over all the elements generated
about each newly inserted mesh point.

On the other hand, the present algorithm will probably not
achieve the efficiency exhibited by Delaunay triangulation point
insertion methods, due to the need to traverse the quadtree data
structures which are not present in these other methods and the
need to consider a sofficient, but not necessary, list of candidate
peints for triangulation at each point insertion process. This
cost, as well as the increased coding complexity, is viewed as
the price required for additional robustness.

5. EXAMPLES

Figure 9 depicts the process of generating a mesh about a
geometry consisting of two thin plates. The boundary discretiza-
tion of these thin plates is relatively uniform, except for two
very large edges on the upper surface of the lower plate. The
combination of thin plates and irregular boundary discretization
poses a significant challenge to traditional Delaunay triangula-
tion methods, as well as to standard advancing front techniques.
In the former case, the boundary integrity is difficult to maintain,
without adding new boundary points. In the latter case, the
merging of two fronts of widely differing length scales is pro-
duced. The present algorithm handles this case automatically,

as can be seen from the figure. A valid triangulation is observed,
even in the region of rapid variation of the characteristic length
scale, althongh the quality of the triangulation degrades in such
regions, as would be expected.

For practical problems involving dense meshes, a smooth
background field function must be constructed, and sophisti-
cated spatial data structures must be emploved for efficiently
performing steps 4 and 7, in Section 3.

The background field function is constructed by the method
described in [22] with a slight modification. A set of point
sources which locally specify the element size are placed in
the flow-field, and a Poisson equation involving these sources
is solved on a background mesh. In the present work, the
Poisson equation is solved on a mesh formed by constructing
a quadtree abount the boundary points which define the initiai
front, as shown in Fig. 10. When the field function is sampled
at a particular point in the plane, the quadtree element con-
taining this point is located by descending the tree, and the
spacing value is taken as a bilinear interpolation of the four
values at the corners of the quad element, which have been
determined by solving the associated Poisson equation,

The search for ‘‘close’ points (i.e., step 4 in Section 3) is
implemented using a standard region quadtree [23]. The search
for intersected front triangle circumcircles (i.e., step 7 in Section
3) and boundary edge circumcircles is somewhat more in-
volved. This is achieved by first representing each circumcircle

h - | e ~ -
o #s ~ K-y < > - s o, ARV
0, 31551, o DI [— i -
N AV - f > o
1 & =~ \ 7
— o Y,)
-~ L
- » A A
™ 2 = i &
- 'l > ~]
- 5 7] -
AN A 5 =
ST
b A
% (=}
]
) >
o S| ., ()
- |~ -
| [¥, \/ -
» e [~
) = ~
T -
Ty]
1 - A — o

DIMITRI J. MAVRIPLIS

>

A
VAV

N

VA
N

BRI
SSEERART
}

K
QVA

S

7

gl
m:}:ék
EAY
AV '7

\/

2
K
FAYAY
AVAVAY

Vi

TAvaY
FAYAY

(VA"
iy
ER

i
o
<

o
P
A

AN

<

NVAYAVAY
%ﬂhﬁ

AV

VAV

<
7S
<K

AN
N

o
T

FIG. 13. Unstructored triangular mesh generated about a four-element airfoil configuration by the present algorithm after the application of mesh smoothing,
a. Number of vertices = 21,232; number of triangles = 41,781 (global view), b. Number of vertices = 21,232; number of triangles = 41,781 (far field view).
c. Number of vertices = 21,222; number of trangles = 41,781 (closeup of leading edge slat).

by a point in three-dimensional space, with coordinates x, v, and
r,where x and y are the physical coordinates of the circumcircle
center and r represents the radius of the circumcircle. A region
octree containing all front triangle and boundary edge circum-
circles is then constructed and maintained dynamically, as the
front evolves [23].

In order to determine all circumcircles intersected by a point
(xo. ¥o), we draw the cone which has its origin at (x,, y,, 0),
and a slope angle of 45°, as depicted in Fig. 11. We then search
all octants of the tree which are contained or intersected by
this cone.

In Fig. 12, the generation of an unstructured mesh about
a multi-etement airfoil configuration is depicted. The spacing
distribution was determined using four source points at the
outer boundary, and six source points close to the airfoil
surfaces. As can be seen, the methoed yields a smooth variation
of elements throughout the flow-field, even without any
additional mesh smoothing. Figure 13 shows the effect of
smoothing the final mesh. Edge swapping is also performed
to ensure that the mesh remains a Delaunay trianguiation,
although very few edges require swapping after the smooth-
ing operation.

The mesh contains 41,781 triangles and 21,232 vertices,
which required a total of 100 s to generate on a Silicon graphics
4D35 workstation. In general, rates of 350 to 450 triangles per

second have been observed on a wide variety of cases. While
the quadtree search routines consume less than 5% of the total
CPU time, the octree-based circumcircle search has been found
to consume roughly 35 to 40% of the total time. As expected,
the efficiency of this algorithm appears to fall in between that
of the advancing front methods [1, 2] and the Delaunay triangu-
lation methods [5, &, 9].

6. CONCLUSIONS AND FURTHER WORK

These results demonstrate the feasibility of generating
unstructured meshes using an advancing front strategy with
an automatic peint placement facility, while conforming to
the rules of Delaunay triangulation. The main advantages of
such an approach over traditional advancing front methods
are increased robustness through the use of a more theoreti-
cally sound approach, while avoiding the boundary integrity
and accuracy induced failures of Delaunay point insertion
methods.

The octree-based search routine for locating intersected front
and boundary circumcircles, while providing an order of magni-
tude increase in efficiency over a brute force type search, still
consumes a significant portion of the overall computational
time. This indicates that further increases in efficiency of the

ADVANCING FRONT DELAUNAY TRIANGULATION

101

FIG. 13—Continued

algorithm may be achieved by re-examining this search opera-
tton. Finally, the implementation of these ideas into the three-
dimenstonal setting is also planned.

REFERENCES

. J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, J. Comput,
Phys. 72, 449 {1987).

. C. Gumbert. R. Lohner, P. Parikh, and S. Pirzadeh, AIAA Paper 89-2175,
June 1989 (unpublished).

. N. P. Weatherill, Princeton University Department of Mechanical and
Aerospace Engineering Report MAE 1715, July 1985 (unpublished).

. T. 1. Baker, in Proceedings, AIAA 8th Comp. Fluid Dyn. Conf, AIAA
Paper 87-1124, June 1987 (unpublished).

. D. G. Holmes and D. D). Snyder. in Proceedings, Second International
Conference on Numerical Grid Generation in Computational Fluid Dry-
namics, Miami, December 1988, edited by S. Sengupta, J. Hauser, P. R.
Eisman, and J. F. Thompson (Pineridge, Swansea, 1988).

. T. K. Dey, C. L. Bajaj, and K. Sugihara, in Proceedings, ACM Symposium
on Solid Modeling Foundations and CAD/CAM Applicarions, Austin,
Texas, June 1991.

. M. L. Mermmiam, AIAA Paper 91-0792, January 1991 (unpublished).

8. S. Rebay, J. Compuz. Physics 106, 125 (1993),

. I. D. Muller, P. L. Roe, and H. Deceninck, in Unstructured Grid Methods

20.
21.
22.
23,

for Advection Dominated Flows, VKI Lecture Notes, pp. 9-1, 9-7,
AGARD Pubt. R-787, March 1992.

. F. P, Preparata and M. §. Shamos, Computational Geomerry, An Introduc-

tion, Texts and Monographs in Computer Science (Springer-Verlag, New
York/Berlin, 19853).

. §. Pirzadeh, AIAA Paper 92-0445, January 1992 (unpublished).

. A, Bowyer, Comprar, J. 2402}, 162 {1981},

. D. F. Watson, Comput. J. 24(2), 167 (1981).

. L. J. Guibas, D. E. Knuth, and M. Sharir, Stanford University Com-

puter Science Rep. No. STAN-CS-90-1300, January 1990 (unpub-
lished}.

. P. L. George, F. Hecht, and E. Saltel, hupacr Compur. Sci. Eng. 2(3).

i87 (1990).

. D. T. Lee and B. Schachter, Int. J. Compus Inform. Sei. 9, 219

(1680).

. 1. M. Nelson, Appl. Math. Modelling 2, 151 {1978).
. A Maus, BIT 24, 151 (1984).
. M. Tanemura, T. Ogawa, and N. Ogita, J. Comput. Phys. 51(2), 191

(1983).

L. P. Chew, Algorithmica 4, 97 {1989).

C. L. Lawson, Discrete Math. 3, 365 (1972).
S. Pirzadeh, AIAA Journal 3(2), 257 (1993).

H. Samet, The Design and Analysis of Spatial Data Structures (Addison—
Waesley, Reading, MA, 1990).

